from .likelihood  import Likelihood
import numpy as np
import dill as pickle

[docs]class Posterior(Likelihood):
"""Posterior object
Posterior object to be sent to the fitting routines.
It is essentially the same as the Likelihood object,
but priors are applied here.
Args:
Note:
Append radvel.prior.Prior objects to the Posterior.priors list
to apply priors in the likelihood calculations.
"""

def __init__(self,likelihood):
self.likelihood = likelihood
self.model = self.likelihood.model
self.vector = self.likelihood.vector
self.vector.dict_to_vector()
self.params = likelihood.params
self.uparams = likelihood.uparams
self.priors = []

self.vparams_order = self.list_vary_params()

def __repr__(self):
self.vector.vector_to_dict()
s = super(Posterior, self).__repr__()
s += "\nPriors\n"
s += "------\n"
for prior in self.priors:
s += prior.__repr__() + "\n"
return s

[docs]    def logprob(self):
"""Log probability
Log-probability for the likelihood given the list
of priors in Posterior.priors.
Returns:
float: log probability of the likelihood + priors
"""
_logprob=0
for prior in self.priors:
_logprob += prior(self.params, self.vector)
if np.isfinite(_logprob):
return _logprob + self.likelihood.logprob()
return _logprob

[docs]    def logprob_array(self, param_values_array):
"""Log probability for parameter vector
Same as self.logprob, but will take a vector of
parameter values. Useful as the objective function
for routines that optimize a vector of parameter values
instead of the dictionary-like format of the radvel.model.Parameters object.
Returns:
float: log probability of the likelihood + priors
"""
self.likelihood.set_vary_params(param_values_array)
_logprob = self.logprob()
# if not np.isfinite(_logprob):
#     raise ValueError("logprob is NaN for the following posterior:\n{}\n{}".format(self.vary_params,
#                                                                                   self.get_vary_params()))

return _logprob

[docs]    def writeto(self, filename):
"""
Save posterior object to pickle file.
Args:
filename (string): full path to outputfile
"""

with open(filename, 'wb') as f:
pickle.dump(self, f)

[docs]    def residuals(self):
"""Overwrite inherited residuals method that does not work"""

return self.likelihood.residuals()

[docs]    def bic(self):
"""Moved to Likelihood.bic"""

return self.likelihood.bic()

[docs]    def aic(self):
"""Moved to Likelihood.aic"""

raise self.likelihood.aic()

"""
Load posterior object from pickle file.
Args:
filename (string): full path to pickle file
"""
with open(filename, 'rb') as f: